Heterodinuclear nitrosyl complexes Part 3^{*}. New organometallic nitrosyls of iridium(III) and platinum

Francesco Neve and **Mauro Ghedini****

Dipartimento di Chimica, Università della Calabria, I-87030 Arcavacata (CS) (Italy)

(Received January 24, 1990; revised April 2, 1990)

Abstract

Treatment of the NO linearly bonded species $[Ir(NO)(dppn)(PPh₃)₂][PF₆]₂ (dppn = 3,6-bis(2'-pyri-1))$ dyl)pyridazine) with X^- anions $(X=Cl$ or I) yields the bent, terminal nitrosyl complexes $[Ir(NO)(X)(dppn)(PPh₃)][PF₆].$ These complexes further react with the organometallic platinum substrates $[PtCl(Me)(dmso)_2]$ (dmso=dimethyl sulfoxide) or $[PtI(R)(cod)]$ $(R=Me$ or Ph, cod=cycloocta-1,5-diene) to give the heterodinuclear derivatives $[(PPh₃)(X)Ir(dp_{pn})(NO)Pt(R)][PF₆]$ (X=Cl, $R = Me$; $X = I$, $R = Me$ or Ph). The spectroscopic data suggest the presence of a bridging NO group in the mixed compounds.

Introduction

The bonding modes displayed by the nitrogen monoxide as a ligand in transition metal complexes can be linear, bent or bridging [2]. When nitrosyl compounds further react, electrophilicor nucleophilic attack on the NO group [3], insertions with subsequent formation of $C-N$ bonds $[4-8]$, or changes of its coordination mode are observed.

A process wherein the product results from a twostep reaction (i) linear $NO \rightarrow bent NO$ and (ii) bent $NO \rightarrow (\mu_2\text{-}NO)$ has not been extensively investigated, although few examples of transformations from terminal, linear $[4, 9]$ or bent $[10]$ to bridging NO are reported in the literature.

We have shown in a previous paper [1] that the formation of the mixed species $[(PPh_3)Cl_2Ir(\mu$ dppn)(μ -NO)PdCl][PF₆] is one example of the above mentioned process. We now describe the conversion of a bent, terminal NO group into one which bridges the iridium metal and the organometallic $Pt(R)$ fragment.

Results and discussion

The starting nitrosyl compound, $[Ir(NO)(dppn)(PPh₃)₂][PF₆]₂ (1)$ where dppn is the binucleating ligand 3,6-bis(2'-pyridyl)pyridazine, contains an iridum(1) center which is coordinated in a trigonal bipyramidal geometry with the two $PPh₃$ molecules in the apical positions. Both dppn, metalbonded like a 2,2'-bipyridine, and a linear NO $(\nu(NO) = 1795 \text{ cm}^{-1}$, KBr) lie on the equatorial plane [11]. Complex 1 reversibily reacts with X⁻ anions yielding the monocationic species $[Ir(NO)(X)(dppn)(PPh₃)₂][PF₆]$ (2: X = Cl; 3: X = I) [12]. In 2 or 3, the addition of X^- on the dppn and NO plane, promotes the change of the NO bonding mode from linear to bent ($\nu(NO)$, KBr: $2 = 3 = 1502$ cm-'). Consequently the metal becomes hexacoordinated in an octahedral geometry and is formally oxidised to iridium(II1).

New iridium-platinum heterobimetallic species have been prepared in high yields by addition of $[PtCl(Me)(dmso)₂],[PtI(Me)(cod)]$ or $[PtI(Ph)(cod)]$ to the respective chlorinated (2) or iodinated (3) compounds (1:l molar ratio in dichloromethane at room temperature). All the binuclear complexes are greenish-yellow, red-brown or brown solids. These solids have been characterised by elemental analysis, spectroscopic techniques (see 'Experimental' and Table 1) as well as by conductivity measurements, which are consistent with 1:l electrolytes [13] of general formula $[(PPh₃)X₂Ir(dpon)(NO)Pt(R)][PF₆]$ $(4: X = C, R = Me; 5: X = I, R = Me; 6: X = I, R = Ph).$

In particular, all complexes show a single resonance in the ³¹P{¹H} NMR spectrum (at δ -21.37 (4), -25.84 (5) and -25.18 (6) ppm) accounting for an Ir(III)-bonded PPh₃ group. The proton spectra are as expected for a bis-chelate dppn molecule and a

^{*}Part 2 is ref. 1.

^{**}Author to whom correspondence should be addressed.

^aAll values are relative to SiMe₄; in $(CD₃)$ ₂CO unless otherwise noted. ^bIn CD₃CN. ^c $J(H⁶H⁵) = 5.0$, $J(H⁶H⁴) = 1.4$, $J(H⁵H⁴) = J(H⁴H³) = 7.9$, $J(H⁶'H⁵) = 5.3$, $J(H⁵'H⁴) = 7.1$, $J(H⁵'H³) = 1.9$, $J(H⁷H⁷) = 9.1$ Hz. $^{e2}J(\text{PtH}) = 84.0$ Hz. **dMultiplet at 8.42-8.41 ppm.** $f(H⁶H⁵) = 5.2$, $J(H⁶H⁴) = 1.4$, $J(H⁵H⁴) = J(H⁴H³) = 7.9$, $J(H⁵H³) = 1.4$, $J(H⁶H⁵) = 5.5$, $J(H⁶H⁴) = 1.5$, $J(H^{6'}H^{3'}) = 1.0$, $J(H^{5'}H^{4'}) = J(H^{4'}H^{3'}) = 7.9$, $J(H^{5'}H^{3'}) = 1.4$, $J(H^{7}H^{7}) = 9.1$ Hz. $^{8}J(PtH) = 81.4$ Hz. $^{8}J(PtH^{5}) = 5.6$, $J(H^6H^4) = 1.4$, $J(H^5H^4) = J(H^4H^3) = 7.9$, $J(H^5H^3) = 1.3$, $J(H^{6'}H^{5'}) = 5.5$, $J(H^{6'}H^{4'}) = 1.6$, $J(H^{5'}H^{4'}) = J(H^{4'}H^{3'}) = 7.8$, $J(H^{5'}H^{3'})$ $= 1.2, J(H⁷H⁷) = 9.2$ Hz.

Pt-R moiety (Table 1). Furthermore, in the IR spectra the NO stretching frequency appears at 1476 (4) 1460 (5) and 1462 (6) cm^{-1} , with a lowering of 25-40 cm^{-1} with respect to the parent compounds 2 and 3. These findings are consistent with the conversion of a bent NO to a bridging one, as found in the formation of $[(PPh_3)Cl_2Ir(\mu-dppn)(\mu-$ NO)PdCl][PF_6] [1]. The mixed Ir(III)/Pd(II) complex has been analysed by X-ray diffraction [1]. Its molecular structure shows that both the dppn and the NO ligands bridge the two metals. In particular, the NO group is bonded in a slightly asymmetric way, the Ir-N and Pd-N bond distances being $2.030(15)$ and 1.953(17) A, respectively.

The bond angle Ir-N(O)-Pd is $113.3(7)^\circ$, while the distance between the iridium and the palladium centers is $3.327(2)$ Å. On the basis of these data, the species 4-6 are formulated as heterodinuclear dppn- and nitrosyl-bridging complexes as reported in Fig. 1.

The synthesis of 4-6 and the NO ligand transformations are summarised in Scheme 1.

Fig. 1. Proposed geometry for the heterobinuclear complex cations: 4 (X=Cl, R=Me); 5 (X=I, R=Me); 6 (X=I, $R = Ph$).

Alternatively, complex 5 can be synthesised, albeit in a lower yield, by direct reaction of **1** with [PtI(Me)(cod)] (see 'Experimental'). Moreover, treatment of 1 with $[PtI₂(cod)]$ produces the homologous compound $[(PPh_1)I_2Ir(\mu-dppn)(\mu NO)PtI$ [[][PF₆] previously reported [12]. Regarding the reactivity of **1,** 2 or 3 toward organometallic platinum(I1) species, it should be pointed out that, in our experimental conditions, none of the above complexes reacted with $[Pt(Me)₂(dmso)₂]$ or $[Pt(Ph)₂(cod)]$. In fact, such a result confirms that the formation of the Ir(III)/Pt(II) heterobimetallic μ_2 -NO species requires the migration of an halide ligand from the incoming metal to the iridium center with the dissociation of a PPh₃ molecule (Scheme 1). Therefore, according to the reported data, these syntheses are possible only if the platinum substrate contains at least one halide ligand and yields are improved if a halide anion is first added to **1.**

Experimental

Apparatus and techniques

All reactions were performed under N_2 , although the complexes were not air sensitive.. The solvents were deoxygenated prior to use. Proton and phosphorus NMR spectra were recorded on a Bruker WH 300 spectrometer. Infrared spectra were recorded for KBr pellets on a Perkin-Elmer 1330 spectrometer. Conductivity measurements were performed using a LKB 5300 B conductolyser conductivity bridge. Carbon, H and N analyses were per-

Scheme 1. Synthesis of the heterodinuclear complexes 4-6. The ligand dppn and the anion PF_6^- are omitted for clarity; L is PP h_3 .

formed by Mr R. Stillitani, Dipartimento di Chimica, Universita della Calabria, Italy.

Preparation of compounds

The ligand 3,6-bis(2'-pyridyl)pyridazine (dppn) [14] was prepared as described; the complexes $[PtCl(Me)(dmso)_2]$ [15], $[PtI(Me)(cod)]$ [16] and [PtI(Ph)(cod)] [16] were prepared by standard methods. The complexes $[Ir(NO)(X)-]$ $(dppn)(PPh₃)₂[[PF₆] (X=Cl, I) [12] and [Ir(NO)-]$ $(dppn)(PPh₃)₂[[PF₆]₂[11]$ were obtained by published procedures.

 $[(PPh₃)Cl₂Ir(\mu-dppn)(\mu-NO)PdCl][PF₆]$ (4)

A colourless solution of $[PtCl(Me)(dmso)_2]$ (0.025) g, 0.062 mmol) in CH_2Cl_2 (3 cm³) was added to a stirred suspension of $[Ir(NO)(Cl)(dppn)(PPh₃)₂]$ -[PF₆] (0.072 g, 0.062 mmol) in CH₂Cl₂ (2 cm³). The resulting green-brown solution turned bright green in a few minutes. After 3 h the green solid formed was filtered out washed with diethyl ether, and vacuum dried. After drying, complex 4 was a greenishyellow powder (0.050 g, 70%) *Anal.* Found: C, 36.0; H, 2.7; N, 6.4. Calc. for $C_{33}H_{28}Cl_2F_6IrN_5OP_2Pt$: C, 34.6; H, 2.5; N, 6.1%. $\Lambda_m = 88.40 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$ $(10^{-3}$ mol dm⁻³) in nitromethane. $v_{\text{max}}(NO)$ 1476(m) cm⁻¹ (KBr). ³¹P{¹H} NMR: δ (121.5 MHz, CD₃CN, 273 K, standard 85% H_3PO_4) - 21.37(s).

 $[(PPh₃)I₂Ir(\mu-dppn)(\mu-NO)PtMe]/PF₆]$ (5)

Method a. A solution of [PtI(Me)(cod)] (0.032 g, 0.072 mmol) in CH₂Cl₂ (5 cm³) was added to a stirred suspension of $[Ir(NO)(I)(dppn)(PPh₃)₂][PF₆]$ (0.090 g, 0.072 mmol) in CH_2Cl_2 (2 cm³). After 18 h the resulting brown suspension was filtered giving 5, a red-brown solid (0.057 g, 60%). *Anal.* Found: C, 29.2; H, 2.0; N, 5.1. Calc. for $C_{33}H_{28}F_6I_2IrN_5OP_2Pt$: C, 29.8; H, 2.1; N, 5.3%. $\Lambda_m = 103.20 \Omega^{-1}$ cm² mol⁻¹ $(10^{-3} \text{ mol dm}^{-3})$ in nitromethane. $\nu_{\text{max}}(NO)$ 1460(m) cm⁻¹ (KBr). ³¹P{¹H} NMR: δ (121.5 MHz, (CD₃)₂CO, 298 K, standard $85\% \cdot H_3PO_4$) - 25.84(s).

Method b. A solution of [PtI(Me)(cod)] (0.015 g, 0.034 mmol) in $CH₂Cl₂$ (4 cm³) was added to a

solution of $[Ir(NO)(dppn)(PPh₃)₂][PF₆]₂$ (0.040 g, 0.034 mmol) in CH_2Cl_2 (2 cm³) and the resulting brown solution stirred at room temperature for 2 days. The red-brown solid microcrystalline precipitate of 5 formed during this time was filtered and vacuum dried (0.010 g, 24%).

 $[(PPh₃)I₂Ir(\mu-dppn)(\mu-NO)PtPh]/PF₆]$ (6)

The complexes $[Ir(NO)(I)(dppn)(PPh_3)_2][PF_6]$ (0.045 g, 0.035 mmol) and [PtI(Ph)(cod)] (0.018 g, 0.035 mmol) reacted in CH_2Cl_2 (2 cm³) to give a brown solution. After 12 h a brown precipitate was formed which was collected by filtration, washed with diethyl ether and vacuum dried (0.040 g, 80%). *Anal.* Found: C, 34.3; H, 2.3; N, 5.4. Calc. for $C_{38}H_{30}F_6I_2IrN_5OP_2Pt$: C, 32.8; H, 2.2; N, 5.0%. $\Lambda_{\rm m}$ =75.70 Ω^{-1} cm² mol⁻¹ (10⁻³ mol dm⁻³) in nitromethane. $\nu_{\text{max}}(NO)$ 1462(m) cm⁻¹ (KBr). ${}^{31}P{^1H}$ NMR: δ (121.5 MHz, (CD₃)₂CO, 273 K, standard $85\% \text{ H}_3\text{PO}_4$) $-25.18(s)$.

Acknowledgements

We thank the Italian Ministero della Universitá e Ricerca Scientifica e Tecnologica for financial support and Johnson Matthey Ltd. for the generous loan of iridium and platinum salts.

References

- **1 A. Tiripicchio, M. Tiripicchio Camellini, F. Neve and M. Ghedini, L Chem SOC.,** *Dalton Trans.,* **(1990) 1651.**
- **2 J. H. Enemark and R. D. Feltham, Coord. Chem** *Rev.,* **I3 (1974) 339.**
- **3 J. A. McCleverty, Chem** *Rev.,* **79 (1979) 53.**
- **4 W. P. Weiner, F. J. Hollander and R. G. Bergman, J.** *Am. Chem. Sot., 106* **(1984) 7462; J. Chang, M. D. Seidler and R. G. Bergman, J.** *Am. Chem. SOC., 111 (1989)* **3258.**
- **5 S. Clamp, N. G. Connelly, J. A. K. Howard, I. Manners, J. D. Payne and W. E. Geiger, J.** *Chem Sot., Dalton Trans.,* **(1984) 1659.**
- 6 J. A. McCleverty, C. W. Ninnes and I. Wolochowicz, J. *Chem. Sot., Dalton Trunr.,* (1986) 743.
- 7 M. Ghedini, A. M. Manotti Lanfredi, F. Neve and A. Tiripicchio, J. *Chem. Sot., Chem. Commun., (1987) 847.*
- 8 *G.* B. Ritter-Addo and P. Legzdins, *Chem. Rev., 88 (1988) 991.*
- 9 J. L. Roustan, N. Ansari and F. R. Ahmed, *Inorg*. *Chim. Actu, 129 (1987)* Lll.
- 10 D. 0. K. Fjieldsted, S. R. Stobbard and M. J. Zaworotko, J. Am. *Chem. Sot., IO7* (1985) *8258.*
- 11 A. Tiripicchio, A. M. Manotti Lanfredi, M. Ghedin and F. Neve, J. *Chem. Sot., Chem. Commun.,* (1983) 97.
- *I2* M. Ghedini and F. Neve, J. *Chem. Sot., Dalton Trans., (1984) 1417.*
- W. J. Geary, *Coord. Chem. Rev., 7* (1971) *81.*
- 14 W. Butte and F. H. Case, J. Org. Chem., 26 (1961) 4690.
- 15 C. Eaborn. K. Kundu and A. Pidcock. J. Chem. Soc., *Dalton Truns., (1981) 933.*
- 16 C. R. Kirshner and J. H. Hutchinson, *Inorg. Chem.*, 2 (1963) 1255.